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ABSTRACT
Recent research work shows that HMM (Hidden Markov Model) is widely used in metamorphic virus detection.
Virus generated from Kits like NGVCK are detected effectively by HMM approach. Our purpose is to examine
various flavours of HMM approach in virus detection.
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INTRODUCTION

Internet has become target of malicious codes due to its increasing use. Malicious codes are executable code and
have the capability to replicate. It makes their survival strong. Viruses design and evolution attached with the area
of programming. Similar to other computer programs viruses carry functions that are intelligent for providing
protection in such a manner that detection remains not easy for virus scanner [1].

Viruses have to take various procedures of intellect for continued existence. That is why they may have complex
encrypting and decrypting engines. These are the most frequent methods used by computer viruses in current
scenario. They make use of these techniques to mask the antivirus and to adopt the certain environment for their
expansion [2].

Polymorphic viruses try to hide the decrypting module. More complex methods were developed enabling the virus
designers to change the code of one virus file and make multiple morphed copies while maintaining its
functionalities. These are the type of viruses which have the ability to mutate itself with the code changed but
without changing its functionalities. Metamorphic virus can become a serious threat considering the fact that there
can be thousands of variants of one virus file with their signature being totally different.

Metamorphic viruses transform its code in a specific manner very frequently and require to be prohibited. Their
analysis will lead to evolve a framework where the overall process of detection will be bounded in specific
outcomes of continuing evolving results. It is essential to make a distinction between replicating programs and its
similar forms. Reproducing programs will not necessarily damage your system [3] [8]. There is big fight between
designers of virus and antivirus. The enhanced knowledge about the certain patterns, specifications can be
designed. Various malicious codes can be evolved and incremented in well precise and efficient manner. For
perfect identification of a metamorphic virus, identification routines must be written that can generate the essential
instruction set of the virus code from the actual occurrence of the infection [9] [10] [11] [12] [13].
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Figurel: Analogy of Metamorphic Viruses

MALWARE CLASSIFICATION APPROACH USING HMM
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Figure 2: Hidden Markov Model

Hidden markov model are widely used for protein sequence analysis, speech recognition, software piracy

detection and malware detection.
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Figure 3: Basic Hybrid Architecture where a Two Layer Feed forward ANN esﬁmates the posterior probabilities
of states Si, Sj, Sk, of a left to right HMM given an hypothetic acoustic observation
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A markov process or model has set of states and fixed probabilities for the state transition. In the hidden markov
model the states are not directly visible to the observer. HMM is a machine learning technique that extracts the
information during training phase. Score is generated by HMM that can be used for classification.
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Figure 4: NGVCK Similarity Graph
Size of bubble = average similarity
2
T
1 @
@ \
o
> o \ ‘ NGVCK
3 Nomal  ygi3p MPCGEN oG
- 06 G2 OVCL32
£ 0
: a4 MPCGEN
)_'_: @ Normal
E 02 ?Nsvcx
-0.2 0 0.2 04 0.6 0.8
Minmum simitarity score

Figure 5: Diagram justifies the impact of NGVCK kit as compare with other kits.

METAMORPHIC VIRUS DETECTION USING HMM
String scanning is the easiest technique used by anti-virus software to identify computer viruses. It searches for
sequence of strings that are part of a specific virus. This sequence of bytes is often called the signature of the
virus, which is extracted for each different virus and organized in a database. Antivirus Engine will then use this
database to search files and system areas for presence of the virus.

Wong and stamp presented detector based on Hidden Markov Models in 2006. They determined that how well
the HMM can separate viruses from normal files. NGVCK (New Generation Virus Creation Kit) is used for
analysis as the challenging dataset. HMM is found to be very efficient in the domain of malware detection.
Similarity scores and threshold specifications found experimentally are given in table 1.
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Table 1 Similarity Scores
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PHMMs explicitly accounts for positional information. Following Notations are used in PHMM.
X={ xq, X5, cev e e x; }is the sequence of emitted symbols/ Observation sequence

N is the total number of states

a is the alphabet for the model/ possible observation symbol

M represents the match states, M;, M,, ... ... ... My
| represent the insert states, I, I, ... ... ... Iy
D represents the insert states, D;, D, ... ... ... Dy

7 represent initial state probability distribution
A is the state transition probability matrix

Ay, is the transition frequency from state k to state | as determined from the given MSA
ay1 m2 1S the transition probability from match state M, to match state M,.
E is the emission probability matrix
Ej1(K) is the emission frequency of symbol k at state M;
ey (K) is the emission probability of symbol k at state M;
A=( A, E, m) represents the PHMM model.
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Figure 6: Profile Hidden Markov Model
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Srilatha Attaluri, Scott Mcghee and mark stamp explained about Profile Hidden Markov Models for metamorphic
virus detection. Profile hidden markov model explicitly accounts for positional information. This information can
be very useful for analysing computer viruses especially metamorphic viruses. It is widely used in bioinformatics
especially for finding the related sequences of DNA and proteins. The authors observed that PHMM is well
suitable for certain type of metamorphic viruses but not for others. Following are some important results observed
experimentally.
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Figure 7: Scores using ngvck_group20_1model
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Figure 8: Scores using ngvck_pp_group20_01model

Mangesh Musale explained about hunting for metamorphic Java script malware. A recent trend in attack is
observed through web pages where malicious codes inserted in Java Script. Author analysed metamorphic Java
Script malware. To detect metamorphic Java Script malware Hidden markov model, opcodes graph similarity,
singular value decomposition are used for finding out the similarity between morphed files and random benign
files.

Scores

Figure 9: HMM score analysis N=2
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Figure 10: ROC curve for HMM
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Figure 11: HMM AUC Analysis

Annachhatre, Austin and stamp explored malware classification based on Hidden markov models. More than 8000
malware samples are then scored against these models and clusters are created based on these scores. Some
important experimental observations made by authors are depicted in following graphs. Authors obtained quite

interesting results and leave remarks for future work like the suggestion to explore variations of k-means
algorithm.

el ¢ try (5=l

Figurelul‘é': Stacked column charf Qrodp by cluster
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Figure 13: ROC curves for k=3

Ashwin Kalbhor, Thomas H. Austin, Eric Filiol, and Stamp developed the duelling HMM Strategy concept for
more accurate classification. Meaning of Hidden states are analysed in order to reveal the in depth issues
underlying in it and finally results are tested on four different compilers, hand written assembly code, three virus
construction Kits and two metamorphic malware families.

Figure 14: Comparison of detection methods
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Figure 15: Design of the tiered HMM approach
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Figure 16: HMMs for GCC, clang, MinGW and Turbo C compilers from disassembled code

Threshold based approach and duelling HMM approach are combined together in tiered fashion in order to
improve the performance thus HMM model show promising behaviour towards malware detection especially
towards metamorphic malware detection.

CONCLUSIONS

Hidden Markov Model is a powerful statistical tool for modeling generative sequences that can be characterized
by an underlying process generating an observable sequence. In this paper a detailed study is made to understand
the impact of Hidden Markov Models in malware detection especially in metamorphic virus detection. Literature
study depicts the various dimensions of HMMs that are being explored by researchers in order to enhance its
utility in malware detection.
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